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Abstract - In this work, the UPML design parameters are analyzed for solving electromagnetic scattering problems using the Finite 

Element Method (FEM). Analysis are presented for the maximum conductivity and thickness of the absorbent layer. The results show 

that small values of the conductivity may not adequately represent the decay of the fields while high values may generate reflections. 

The thickness of the layer, in turn, must have a minimum value to guarantee the convergence of the solution. 

 

Index Terms— UPML, FEM, Electromagnetic scattering.  

 

I. INTRODUCTION 

The use of the Finite Element Method (FEM) to solve 

unlimited problems, such as electromagnetic scattering, has 

been the reason of several studies and research. Due to the 

characteristics of this type of problems it is necessary to 

introduce an artificial boundary to limit its computational 

domain. The insertion of this boundary can generate wave 

reflections in the study domain [1]. An efficient approach to 

dealing with this drawback is to use a perfectly matched 

absorbent layer (PML) as an artificial border [2]. 

 Initially proposed for the FDTD, the UPML (Uniaxial 

Perfectly Matched Layers) began to be employed in the FEM 

for truncation of the computational domain of open problems 

[1]. The UPML is based on the use of absorbent layers and on 

the concept of absorbing, theoretically without spurious 

reflections, the electromagnetic wave at any frequency and 

incidence angle [3]. 

 This paper aims to present the behaviour of UPML 

design parameters for electromagnetic scattering problems 

solved via FEM. The analysis and construction characteristics 

of each parameter of the project are presented. The results 

show that for an efficient absorption, adequate parameteres 

values should be used. 

II. UPML 

 An anisotropic PML medium is known as UPML and has 

been initially proposed by Sacks [2]. For a single interface, the 

anisotropic medium is uniaxial and composed of magnetic and 

electric tensors. This medium works as the PML proposed by 

Berenger avoiding undesirable nonphysical field [2]. 

A. Tensors 

The construction of the UPML medium is based on the 

definition of the magnetic and electric tensors, which can be 

defined as [3]: 
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where, ε is the electric permissivity of the medium, 𝜇 is the 

permeability of the medium and 𝑠𝑥 ,  𝑠𝑦 and 𝑠𝑧 are the 

components of the tensor 𝑠̿.  

Similar to the Berenger's PML, the unreflective property of 

the UPML medium is valid for any sx, sy and sz. 

B. The incorporation of the UPML into the FEM 

The incorporation of the UPML into the finite element method 

can be done by inserting the tensors given by (1) into the 

Maxwell equations [3]. Thus, the wave equation for the 

magnetic field can be defined as [1]: 

 

               ∇ ∙ (𝛼1∇𝑯𝒛) + 𝑘0
2𝛼2𝑯𝒛 = 0                               (2) 

where, 𝛼1 = 𝜇𝑟
−1𝑠̿−1, 𝛼2 = 𝜀𝑟𝑠̿  and k0 is the wave number. 

Based on (2), the weak FEM-UPML formulation for an 

electromagnetic scattering problem due to a conductive object 

can be derived and given by Eq. (3) [1]. 

 ∫ ∇𝑤. (𝛼1𝑠̿∇𝑢𝑠) − 𝑘0
2𝛼2𝑠̿𝑤. 𝑢𝑠𝑑Ω = −∫ 𝑤

𝜕𝑢𝑖

𝜕𝑛Υ
 𝑑Υ

Ω
         (3) 

 

where, 𝑤 is the weighting function, 𝑢𝑠 is the scattered 

magnetic field, 𝛶 is the object surface and 𝑢𝑖 is the incident 

magnetic field. 

To ensure that the smallest reflection at the termination 

occurs, a perfect conductor (PEC) is used as termination of the 

absorber layer [4]. 

C. UPML Project 

The construction of the UPML is done by means of the 

definition of some parameters present in the tensors, among 

them stand out: i) the degree of gradation (m) that represents 

the way that the conductivity (𝜎) varies within the layer; ii) the 

maximum conductivity ( 𝜎𝑚𝑎𝑥). It is necessary to find a 

balance of this parameter since for a very small value of 𝜎𝑚𝑎𝑥  

the attenuation of the field is not enough to eliminate the 

reflection. On the other hand, high values of 𝜎𝑚𝑎𝑥 , reflections 

can occur, since the finite element mesh is insufficient to 

model the quickly change in material properties; iii) the 

scaling factor k is present in the equation for calculating the 

tensors 𝑠𝑥 and 𝑠𝑦 . The increase of k reduces the phase velocity 

of the wave which leads to an artificial increase of the 

refractive index and  improves the performance of the UPML 

in cases of oblique incidence; iv) the reflection factor (R); and, 

v) the thickness of the layer. 

The arguments of the tensor can be given by [1]: 

𝑠𝑥 = 𝑘𝑥 −
𝑗𝜎𝑥

𝜔𝜀1

.  𝑠𝑦 = 𝑘𝑦 −
𝑗𝜎𝑦

𝜔𝜀1

.                                          (4) 

 



The tensor arguments 𝑠̿ have distinct values in different 

areas of the mesh, as depicted by Fig. 1. In the area of 

intersection between the planes x and y sz =1, between 𝑥𝑚𝑖𝑛  

and 𝑥𝑚𝑎𝑥 sy = sz = 1 and between 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥  𝑠𝑥 = 𝑠𝑧 = 1. 

Note that for a two-dimensional problem 𝑠𝑧 is always equals  

1. Within the mesh, that is, outside the absorbers sx=sy=sz=1.  
 

 
Figure 1: UPML representation and tensors value in each region. 

 

Several profiles are suggested for 𝜎 and 𝑘 gradations. The 

most efficient ones are those that use the polynomial variation 

in the UPML environment [4]: 

 

 𝜎𝑥 = (
𝑥

𝐿
)𝑚𝜎𝑚𝑎𝑥        𝜎𝑦 = (

𝑦

𝐿
)𝑚𝜎𝑚𝑎𝑥                                    (5) 

𝑘𝑥 = 1 + (𝑘𝑚𝑎𝑥 − 1) (
𝑥

𝐿
)

𝑚

    𝑘𝑦 = 1 + (𝑘𝑚𝑎𝑥 − 1) (
𝑦

𝐿
)

𝑚

   (6) 

                                                  

where 𝑥 and 𝑦 are the positions of the element in the layer, L 

is the inner side of the layer, m is the degree of gradation of 

the polynomial and 𝜎𝑚𝑎𝑥  is the maximum value of 

conductivity that can be given by: 

 

  𝜎𝑚𝑎𝑥 = −
𝑐𝜀0 𝑙𝑛(𝑅)

(
2

𝑚+1
)𝐿

.                                                               (7) 

 

In (7) 𝜀0 represents the electric permissivity in the vacuum, 

𝑐 is the speed of light, 𝑅 is the desired reflection, n the degree 

of gradation and 𝐿 the thickness of the layer. 

III. RESULTS 

The problem of electromagnetic scattering due to a 2D 

perfect conductor is solved via FEM-UPML. For all analysis 

of UPML parameters, the following datas are considered: 

cylinder radius of 0.3λ, distance between the target and the 

absorber of 0.1λ and layer thickness of 1.6λ. 

Table 1 shows the average error for the absolute value of the 

magnetic field obtained from the FEM-UPML for various 

values of m and the analytical solution [1]. It is observed that 

𝑚 = 3 gives the smallest error.  
Table 1 

Absolute average error of the magnetic field for various values of m. 

m 1 2 3 4 5 

Absolute average error 3.91% 0.94% 0.67% 1.07% 1.69% 

 

Table 2 shows the average error for the absolute value of the 

magnetic field obtained from the FEM-UPML for various 

values of kmax and the analytical solution. The best result is 

obatained for 𝑘𝑚𝑎𝑥 = 6. 
Table II 

Relative average errors for variation of parameter kmax. 

𝑘𝑚𝑎𝑥 1 3 6 10 

Relative average error 6.6% 4.12% 3.7% 5.04% 

 

Figure 2 shows the behavior of the magnetic field within the 

layer for various values of 𝜎𝑚𝑎𝑥 . It is observed that for 𝜎𝑚𝑎𝑥  

between 0.5 and 1, the field is totally absorbed by the 

absorbent layer. And, for very small values of 𝜎𝑚𝑎𝑥  the fields 

presents some oscillation and are not well absorbed. 

 

 
Figure 2: Field behavior analysis due to variation 𝜎𝑚𝑎𝑥. 

 

 To evaluate the influence of the thickness of the UPML 

layer, it is varied from 0.4λ to 3.6λ with step of 0.1. Figure 3 

presents the results. It can be noticed that for the studied case, 

the thickness of 1.2λ reaches the minimum error. 

 
figure 3: Absolute Average Error x Layer Thickness. 

 

IV. CONCLUSION 

 This paper presents a study of the variation of UPML design 

parameters for electromagnetic scattering problems using 

FEM. From the results, it is possible to conclude that the 

UPML is very sensitivity of its parameters values.  
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